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Organic solar cells (OSCs) have been developed rapidly in
past years, due to the fast evolution of wide-bandgap copoly-
mer donors and low-bandgap non-fullerene acceptors[1−9].  At
present,  the  highest  power  conversion  efficiencies  (PCEs)  for
single-junction OSCs and tandem OSCs exceed 19% and 20%,
respectively[10, 11].  These  OSCs  are  typically  fabricated  by  us-
ing  low-boiling-point  solvent  chloroform  (CF)  with  an  effect-
ive  area  <0.1  cm2.  The  doctor-blading  deposition  is  the  most
advantageous  technique  to  fabricate  OSCs  with  low-boiling-
point  solvent  for  upscaling  lab  cells  to  industrial-scale  mod-
ules[12], exhibiting simple operation, low cost, and high materi-
al  utilization[13−15].  Herein,  a  typical  OSC  material  system
PM6:Y6 (Fig. 1(a)) was used to fabricate OSCs modules via doc-
tor-blading  deposition  in  ambient  condition,  and  the  influ-
ence  of  the  ambient  temperature  and  substrate  temperature
on  the  film  quality  was  investigated.  Furthermore,  PC61BM
was incorporated into PM6:Y6 blend, and a certified record effi-
ciency of 14.34% was achieved for OSC modules with a desig-
nated illumination area of 26.75 cm2.

Some  works  indicated  that  the  performance  parame-
ters  for  doctor-bladed  OSCs  from  low-boiling-point  solv-
ent  CF  were  normally  dependent  on  the  temperatures  (25–
45  °C)[12, 16−18].  However,  controlling  the  ambient  temperat-
ure  and  substrate  temperature  at  the  same  value,  for  ex-
ample,  from  17  to  30  °C,  interesting  results  were  achieved,
i.e., doctor-bladed film quality and device performance are al-
most  independent  on  temperature.  Atomic  force  microscopy
(AFM) images of doctor-bladed PM6:Y6 films at different tem-
peratures  (17,  24  and  30  °C)  are  almost  the  same  (Fig.  S1).
Meanwhile,  the  root-mean-square  roughnesses  (Rrms)  are
around 1.50 nm. In addition,  grazing incidence wide-angle X-
ray  scattering  (GIWAXS)  patterns  for  doctor-bladed  PM6:Y6
thin  films  at  different  temperatures  also  exhibit  the  similar
line-cut  profiles  (Fig.  1(b)  and  Fig.  S2).  The  (010)  peaks  at

1.73  Å–1 in  the  out-of-plane  (OOP)  direction  and  the  (100)
peaks at 0.29 Å–1 in the in-plane (IP) direction indicate the co-
existence  of  face-on  and  edge-on  orientation  in  three  cases.
The diffraction peaks of PM6:Y6 films locate at the same q val-
ues,  indicating  the  same  lamellar  stacking  distance  and  π–π
stacking distance.

Doctor-bladed  cells  at  three  temperatures  were  fabric-
ated  with  a  structure  of  ITO/ZnO:PEI/PM6:Y6/MoO3/Ag[19−21].
The  current  density–voltage  (J–V)  curves  and  external
quantum  efficiency  (EQE)  spectra  are  shown  in Figs.  1(c)  and
1(d),  and  the  performance  data  are  listed  in  Table  S1.  The
cells  processed  at  17,  24  and  30  °C  exhibit  PCEs  of  14.57%,
14.78%  and  14.64%,  respectively,  and  the  average  PCEs  are
14.35%,  14.58%  and  14.46%,  respectively.  The  results  sug-
gest  that  the  performance  parameters  for  three  cases  are  al-
most  the same,  which are  consistent  with  the results  of  mor-
phology  and  GIWAXS.  The  dependence  of J–V characteristics
on light intensity (Plight) was used to investigate the recombina-
tion  kinetics  in  cells.  As  shown  in  Fig.  S3(a),  three  cells  show
an almost equal α value of 0.975, indicating that the bimolecu-
lar  recombination  is  not  remarkable  in  PM6:Y6  cells  made  at
three temperatures. The Voc as a function of Plight is plotted in
Fig.  S3(b).  When  the  slope  of Voc versus  ln(Plight)  is  equal  to
1  or  2 kT/q,  the  dominant  recombination  mechanism  is
bimolecular  recombination  or  Shockley-Real-Hall  recombina-
tion,  respectively.  The calculated slopes for  the devices at  17,
24  and  30  °C  are  1.398,  1.387  and  1.414 kT/q,  respectively.
The results indicate that PM6:Y6 cells processed at three tem-
peratures  have  relatively  strong  trap-assisted  recombination,
instead of bimolecular recombination.

Furthermore,  doctor-bladed  large-area  OSC  modules
were  made  at  24  °C  in  ambient  condition.  The J–V curves  of
the modules with a designated illumination area of 26.75 cm2

are  shown Fig.  1(e),  and  the  photovoltaic  parameters  are  lis-
ted in Table 1.  The modules gave a PCE of 13.71%, with a Voc

of 10.73 V, a Jsc of 1.792 mA/cm2, and an FF of 71.29%. The cer-
tified PCE is 13.56% by the Chinese National PV Industry Meas-
urement  and  Testing  Center  (NPVM)  (Figs.  S4–S10).  Using
fullerene  derivatives  is  a  simple  and  effective  way  to  enhan-

  
Correspondence to: L M Ding, ding@nanoctr.cn; J L Yang,

junliang.yang@csu.edu.cn
Received 23 AUGUST 2022.

©2022 Chinese Institute of Electronics

SHORT COMMUNICATION

Journal of Semiconductors
(2022) 43, 100501

doi: 10.1088/1674-4926/43/10/100501

 

 
 

https://doi.org/10.1088/1674-4926/43/10/100501
https://doi.org/10.1088/1674-4926/43/10/100501
mailto:ding@nanoctr.cn
mailto:junliang.yang@csu.edu.cn


ce  PCE[22−24].  Thus,  it  is  possible  to  further  improve  the  mod-
ule  efficiency via introducing PC61BM into  PM6:Y6 blend.  The
modules  based  on  PM6:Y6:PC61BM  (1  :  1  :  0.2)  offer  a  record
PCE  of  14.35%,  with  a Voc of  10.89  V,  a Jsc of  1.814  mA/cm2,
and  an  FF  of  73.42%  (Table  1).  NPVM  demonstrates  a  PCE  of
14.34% (Figs.  S11–S17).  This certified PCE is  the highest value
reported to date for large-area OSC modules.

In  short,  we  found  that  the  morphology  and  device  per-
formance  for  doctor-bladed  PM6:Y6  thin  films  from  low-boil-
ing-point  solvent  are  almost  independent  on  the  temperat-
ures if controlling the ambient temperature and substrate tem-
perature  at  the  same  value.  With  a  designated  illumination
area  of  26.75  cm2,  the  large-area  PM6:Y6  modules  demon-
strate a certified PCE of 13.56%, and the PM6:Y6:PC61BM mod-

 

Fig. 1. (Color online) (a) Chemical structures of PM6 and Y6. (b) 1D GIWAXS line curves along the out-of-plane (OOP, dotted line) and in-plane (IP,
solid line) directions. (c) J–V curves for PM6:Y6 cells made at different temperatures. (d) EQE spectra for PM6:Y6 cells made at different temperat-
ures. (e) J–V curves for PM6:Y6 and PM6:Y6:PC61BM modules with a designated illumination area of 26.75 cm2.

Table 1.   Performance data for doctor-bladed modules with a designated illumination area of 26.75 cm2.

Active layer Voc (V) Jsc (mA/cm2) FF (%) PCE (average) (%)

PM6:Y6 10.73 1.792 71.29 13.71 (13.51)
PM6:Y6 a 10.64 1.815 70.22 13.56
PM6:Y6:PC61BM 10.89 1.795 73.42 14.35 (14.01)
PM6:Y6:PC61BM a 10.85 1.814 72.89 14.34

a Certified results in the Chinese National PV Industry Measurement and Testing Center.
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